中国青年网

科技

首页 >> 文字列表 >> 正文

“看清”大脑有多难?我国成功绘制迄今最高精度猕猴脑图谱

发稿时间:2021-07-27 14:33:00 作者:邱晨辉 来源: 中国青年报客户端

  中青报·中青网记者 邱晨辉

  大脑是人体最为复杂的器官,为了能“看清”大脑的内部结构,了解其运转机制,科学家曾无数次尝试绘制大脑高清“地图”,但其技术难度极大。如今,中国科学家在这一领域迎来最新突破。

  中国科学院深圳理工大学、中国科学院深圳先进技术研究院脑认知与脑疾病研究所毕国强教授、刘北明教授、徐放副研究员带领团队,联合中国科学技术大学和合肥综合性国家科学中心人工智能研究院团队,历时5年,通过自主研发的高通量三维荧光成像VISoR技术和灵长类脑图谱绘制SMART流程,实现了猕猴大脑的微米级分辨率三维解析,这是目前世界上最高精度的灵长类动物的脑图谱。7月26日,国际学术期刊《自然·生物技术》刊发这一成果论文。

  中国科学院院士、浙江大学脑科学与脑医学学院院长段树民教授评论道:近些年来对小动物介观全脑图谱绘制技术取得了很大进展,但对灵长类等大动物全脑的介观成像,在很多技术层面上仍然面临巨大挑战。此次科研团队研发的包括VISoR和SMART等集成技术,为解决这一难题提供了可行的手段。

    

  中科院深理工、深圳先进院副研究员徐放,中国科学技术大学研究生沈燕、丁露锋、杨朝宇是该成果论文的第一作者。

  徐放介绍,大脑是一个三维立体结构,其内部的神经网络结构就像是地球表面错综复杂的道路与河流,绘制大脑图谱就是要把这些河流与道路测绘出来,精细分解和描绘大脑复杂的三维结构。

  “为了理解人类大脑,科学家需要将果蝇、小鼠等作为基准和模型,其中猕猴是研究最为深入的非人类灵长类动物,为理解人类大脑健康和疾病提供了最佳模型系统。”徐放说。

  不过,由于技术限制,目前的脑图谱研究主要集中于小鼠层面,国际通用的成像技术对小鼠进行微米分辨率全脑成像通常需要数天的时间。猕猴脑体积为鼠脑的200倍以上,要在较短时间内完成猕猴全脑成像是一项极大的挑战。

  此前,研究团队经过数年的攻关,研发了VISoR高速三维荧光成像技术,该项成果于2019年发表于《国家科学评论》。

  徐放说,这一技术通过斜截面扫描照明与同步成像,实现了在样品连续运动时进行无模糊的图像采集,消除了传统大样品成像需要在不同的小视野切换、停顿所带来的时间损失,数据采集速度比当前通用于小鼠脑图谱绘制的几种三维光学成像技术提升了数十倍,使得猴脑图谱解析成为可能。

  除了成像通量的挑战,对猕猴脑进行高分辨全脑成像还面临沟回结构复杂、组织透明度差等多方面的困难。

  徐放介绍,在通过了严格审核的伦理规范下,研究团队对猕猴大脑展开研究,最终形成了“同步飞扫”VISoR技术。经过数年的优化迭代,该技术能达到解析细胞形态的微米和亚微米分辨率,最终在100小时内完成对猕猴全脑样品1×1×2.5微米三维分辨率的图像采集,两只猕猴大脑图像原始数据量超过1PB。

  “如此海量的数据蕴含着非常庞大的信息量,但也为数据分析带来极大的挑战。”徐放说。面对庞大的数据体积,研究团队开发了自动的三维图像拼接技术,实现了猕猴大脑的三维图像重建。

  大脑有着上亿个神经元,其长长的神经元轴突就像是电线,延伸到大脑的各个区域,发挥着传输信号的功能。只有对全脑进行微米级分辨率的成像与重建,才能对单个神经元轴突形态进行完整描绘。

  论文共同通讯作者毕国强说,研究团队开发了渐进式的半自动追踪技术,实现了对神经元轴突的长距离追踪,并基于前期工作基础,发现了前所未知的猕猴轴突纤维投射特性及其在大脑皮质沟回处转折延伸的多种路径形态。

  “他们的初步观察表明,大脑皮层下方白质中的许多轴突具有出乎意料的复杂轨迹,包括与皮层折叠相关联的急转弯。这一发现可能对理解大脑形态发生具有深远意义。”美国科学院院士、神经生物学与解剖学家、华盛顿大学大卫·冯·埃森教授说。

  毕国强说,作为当前世界最快的大尺度三维组织成像方法,VISoR技术可以对各种模型动物大脑进行高通量、高精度的定量解析,并可扩展至其它组织器官,在大规模药物筛选、快速病理诊断,以及更大型生物样品成像等领域都有广阔的应用前景。这项技术产生的超大规模数据与人工智能技术的结合,将有望帮助理解人类大脑和身体器官的精细结构及其在疾病中的变化规律,加速医疗诊断和药物研发,促进人类健康。

  “目前这项工作只是一个非常初步的开始,未来团队还需要更多的数据科学家的合作参与,进行更深入的图像数据挖掘和分析,共同理解灵长类动物的大脑精细结构与智能的关系。”徐放说。

  他还表示,研究团队将深入研究灵长类大脑结构的组成,以及其与大脑智能的关系和疾病中的变化,并与医院、人工智能相关公司开展合作,继续开发相关技术,用于动物及人类器官病理组织的高分辨全景三维成像。

 
责任编辑:原春琳
加载更多新闻